Transmembrane type-2-like Cu2+ site in the P1B-3-type ATPase CopB: implications for metal selectivity.

نویسندگان

  • Gabriele Meloni
  • Limei Zhang
  • Douglas C Rees
چکیده

Metal selectivity in P1B-type ATPase transporters is determined by conserved amino acid residues in their transmembrane helices responsible for metal binding and transport across the cellular membrane. The Cu(2+)-selective CopB from Archaeoglobus fulgidus has been investigated to explore the coordination chemistry of the transition metal binding sites in P1B-3-type ATPases. Electronic absorption, electron paramagnetic resonance, and X-ray absorption spectroscopic studies indicate the presence of a high-affinity transmembrane Type-2-like Cu(2+) center in which a single cupric ion is coordinated in a distorted square pyramidal geometry by mixed nitrogen/oxygen and sulfur ligands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain.

P1B-type ATPases transport heavy metal ions across cellular membranes. Archaeoglobus fulgidus CopB is a member of this subfamily. We have cloned, expressed in Escherichia coli, and functionally characterized this enzyme. CopB and its homologs are distinguished by a metal binding sequence Cys-Pro-His in their sixth transmembrane segment (H6) and a His-rich N-terminal metal binding domain (His-N-...

متن کامل

Conformations of the apo-, substrate-bound and phosphate-bound ATP-binding domain of the Cu(II) ATPase CopB illustrate coupling of domain movement to the catalytic cycle

Heavy metal P1B-type ATPases play a critical role in cell survival by maintaining appropriate intracellular metal concentrations. Archaeoglobus fulgidus CopB is a member of this family that transports Cu(II) from the cytoplasm to the exterior of the cell using ATP as energy source. CopB has a 264 amino acid ATPBD (ATP-binding domain) that is essential for ATP binding and hydrolysis as well as u...

متن کامل

A new metal binding domain involved in cadmium, cobalt and zinc transport

The P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in natur...

متن کامل

A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae.

Detoxification and homeostatic acquisition of metal ions are vital for all living organisms. We have identified PCA1 in yeast Saccharomyces cerevisiae as an overexpression suppressor of copper toxicity. PCA1 possesses signatures of a P1B-type heavy metal-transporting ATPase that is widely distributed from bacteria to humans. Copper resistance conferred by PCA1 is not dependent on catalytic acti...

متن کامل

Sinorhizobium meliloti Nia is a P(1B-5)-ATPase expressed in the nodule during plant symbiosis and is involved in Ni and Fe transport.

The P1B-ATPases are a ubiquitous family of metal transporters. These transporters are classified into subfamilies on the basis of substrate specificity, which is conferred by conserved amino acids in the last three transmembrane domains. Five subfamilies have been identified to date, and representative members of four (P1B-1 to P1B-4) have been studied. The fifth family (P1B-5), of which some m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS chemical biology

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2014